Pasar al contenido principal
Inicio Departamento de Ciencias de la Computación Logo LCC
Depto. de Ciencias de la Computación
Departamento de Ciencias de la Computación
Facultad de Ciencias Exactas, Ingeniería y Agrimensura
Universidad Nacional de Rosario
Logo FCEIA Logo UNR

Menú principal

  • Inicio
  • Departamento
  • LCC
  • Materias
  • Ingresantes
  • Docentes

Formulario de búsqueda

Login Menu

  • Login

Idiomas

  • Es
  • En

Usted está aquí

Inicio » LCC » Tesinas de Grado » Tesinas
  • Materias
  • Perfil y Plan
  • Jornadas de Cs. de la Computación
  • Tesinas de Grado
    • Propuestas
    • Tesinas
  • El Proyecto PROMINF‐LCC‐FCEIA
  • Lista de correo

Predicción de Sistemas Dinámicos con Redes Neuronales Profunda

Autor: 
Daniel Gerardo Maino
Fecha Defensa: 
05/11/2013
Resumen: 
Existe una diversidad de series temporales que son objeto de estudio en múltiples disciplinas, por ejemplo en la meteorología, la geofísica, la biología, la medicina y la sociología. En esta Tesina se aborda el problema de predicción de series temporales caracterizadas por su naturaleza determinística no-lineal. Se presenta una técnica basada en redes neuronales profundas para la predicción de sistemas dinámicos a partir de una serie temporal. Se sabe que las arquitecturas profundas pueden ser mucho más eficientes a la hora de representar ciertas funciones. Por otro lado, recientemente se han publicado trabajos en los que se encuentra evidencia del beneficio en construir un modelo con salida-múltiple, de manera que este aprenda y preserve las dependencias entre los valores de la predicción. Se evalúa el rendimiento de arquitecturas profundas frente a las redes neuronales convencionales y a su vez el uso de salida-múltiple frente a las redes de salida-simple, en un modelo de predicción para múltiples horizontes. Los resultados muestran un mejor desempeño de las arquitecturas profundas sobre las series temporales consideradas.
Institución: 
FCEIA-UNR
Director y Co-Director: Lucas Uzal y Pablo Granitto
Tesina: 
Icono PDF 60.pdf

Contacto

Administración: webmasterlcc@fceia.unr.edu.ar
Preguntas: ingrlcc@fceia.unr.edu.ar

Logo FCEIA Logo UNR
  • Inicio
  • Departamento
  • LCC
    • Materias
    • Perfil y Plan
    • Jornadas de Cs. de la Computación
    • Tesinas de Grado
      • Propuestas
      • Tesinas
    • El Proyecto PROMINF‐LCC‐FCEIA
    • Lista de correo
  • Materias
  • Ingresantes
  • Docentes
Diseñado por
Sitemap